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Abstract
Psychosis (delusions or hallucinations) in Alzheimer’s disease (AD+ P) occurs in up to 50% of individuals and is
associated with significantly worse clinical outcomes. Atypical antipsychotics, first developed for schizophrenia, are
commonly used in AD+ P, suggesting shared mechanisms. Despite this implication, little empirical research has been
conducted to examine whether there are mechanistic similarities between AD+ P and schizophrenia. In this study, we
tested whether polygenic risk score (PRS) for schizophrenia was associated with AD+ P. Schizophrenia PRS was
calculated using Psychiatric Genomics Consortium data at ten GWAS p value thresholds (PT) in 3111 AD cases from 11
cohort studies characterized for psychosis using validated, standardized tools. Association between PRS and AD+ P
status was tested by logistic regression in each cohort individually and the results meta-analyzed. The schizophrenia
PRS was associated with AD+ P at an optimum PT of 0.01. The strongest association was for delusions where a one
standard deviation increase in PRS was associated with a 1.18-fold increased risk (95% CI: 1.06–1.3; p= 0.001). These
new findings point towards psychosis in AD—and particularly delusions—sharing some genetic liability with
schizophrenia and support a transdiagnostic view of psychotic symptoms across the lifespan.

Introduction
Psychosis in Alzheimer’s disease (AD+ P)—broadly

comprising delusions and hallucinations—is experienced

by up to 50% of people over the course of the illness, with
prevalence peaking in the later stages1. AD+ P is asso-
ciated with accelerated cognitive decline (independent of
disease duration), higher mortality rates and distress to
both people with the disease and their carers2–4. More-
over, there are wider societal implications with long-term
follow-up studies indicating that AD+ P is associated
with a shorter time to nursing home care5. Despite these
compelling reasons for effective management, there is a
critical treatment gap, with no licensed treatments avail-
able in many jurisdictions. Atypical antipsychotics—
developed first for schizophrenia—are frequently used to
treat AD+ P (in many countries off label) and, while they
have some modest benefits, are associated with
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considerable harms, including a 1.5- to 1.8-fold increase
in mortality and a threefold increase in stroke6.
Clinically useful alternatives to antipsychotics are

scarce. There are only two new antipsychotic compounds
in phase II or later stages of development (pimavanserin
and MP-101) but both are refinements of existing
mechanisms of action of atypical antipsychotics targeting
mechanisms relevant to schizophrenia (e.g. 5HT2A,
mGluR2/3) and side effects remain a concern7. The lim-
ited understanding of the biological mechanisms under-
pinning AD+ P represents a major challenge to the
effective targeting of existing treatments and the identi-
fication of novel treatment targets.
One key question is whether some or all of the psy-

chotic symptoms experienced by people with AD have a
similar basis to schizophrenia. Phenomenologically the
psychotic symptoms in each are different; in AD visual
hallucinations are more common than auditory halluci-
nations, delusions are usually simple, and the first rank
symptoms of schizophrenia are very rare. In addition,
schizophrenia is characterized by both positive and
negative symptoms. While negative symptoms can also
accompany psychosis in AD, consensus is yet to be
reached on whether these other neuropsychiatric symp-
toms form part of the AD+ P clinical syndrome. Despite
the different phenomenology, atypical antipsychotics
confer some treatment benefits in some cases of AD+ P8,
and similar neuropsychological deficits in processing
speed and executive function have been observed in
individuals with very-late-onset schizophrenia-like psy-
chosis and AD+ P9, suggesting some overlap.
A transdiagnostic hypothesis, proposing a mechanistic

overlap between AD+ P and schizophrenia, is gaining
some traction10 and is supported by genetic studies of
psychosis in adolescence, the general adult population and
Huntington’s disease all showing overlap with schizo-
phrenia11–13. In view of these findings and the high her-
itability of schizophrenia14 and of AD+ P (estimated at
81% and 61% respectively)15, it is logical to look for
common genetic underpinnings of the two disorders.
Comparative studies examining common mechanisms
between AD and schizophrenia point towards synaptic
elimination and disruption, and telomere length16–18, but
studies examining AD+ P specifically and schizophrenia
are less common. It is of note that a recent major GWAS
reported a nominally significant genetic correlation
between schizophrenia and AD19. It is possible that the
presence of psychosis in the AD sample (which was
unknown in this study) contributed to part of the asso-
ciation, underscoring the need for dissection of the AD
phenotype by psychosis status. In a small study, a copy
number variant (CNV) with significant overlap of a
duplicated region implicated in schizophrenia and autism
(16p11.2) was found in two of 440 AD+ P cases but not

in AD without psychosis, or in those with more occasional
symptoms20. Linkage studies have also implicated regions
of the genome in AD+ P that have been identified in
schizophrenia21,22. Another approach is to examine
whether polygenic risk for schizophrenia, summarized in
a score (the weighted sum of risk associated alleles) with
better discrimination properties than single markers23, is
associated with AD+ P. Work in this area is limited to
only one recent study which, surprisingly, reported that a
genetic risk score comprising 94 SNPs reaching genome-
wide significance for association with schizophrenia was
lower in AD+ P compared with AD without psychosis24.
While this study represents an important preliminary step
in AD+ P research, a full genome-wide polygenic risk
score (PRS) approach is imperative to address this key
question25,26.
Another largely unexplored avenue in AD+ P genetic

research relates to the split of delusions and hallucina-
tions. Although the two symptoms frequently co-occur in
AD, there is evidence from longitudinal cohort studies
indicating that 10–20% of people experience hallucina-
tions without delusions and that the two symptoms are
associated with different clinical outcomes2,27, suggesting
the presence of two distinct clinical phenotypes. While it
is commonplace to separate out composite psychotic
symptoms in neuroimaging studies of AD+ P28,29, their
separate genetic associations have not yet been examined
in any large-scale AD studies leveraging GWAS data30.
This is a particularly relevant issue when assessing genetic
overlap with schizophrenia where the emerging evidence
from neuroimaging and the clinical similarity supports the
hypothesis that shared etiology would be specific to
delusions.
We conducted an analysis of the relationship between

genetic liability for schizophrenia and AD+ P with two
principal objectives; firstly, we tested whether PRS for
schizophrenia was associated with AD+ P and secondly,
we examined the association between the PRS and AD
with delusions.

Methods
Ethical approval for this analysis protocol was obtained

from University of Exeter Medical School Research Ethics
Committee (Nov17/D/143).

Cohorts
AD+ P target data consisted of 3111 AD cases from 11

cohort studies in Europe and the USA: AddNeuroMed31

(Europe, longitudinal: assessment every 3 months for
maximum 1 year), Alzheimer’s Disease Neuroimaging
Initiative32 (ADNI; USA, longitudinal: assessment at
baseline, 6, 12, 24 and 36 months for maximum 3 years),
Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS
1; Italy, cross-sectional), Health and Memory Study in
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Nord-Trøndelag33 (HMS; Norway, cross-sectional),
Resource Use and Disease Couse in Dementia34 (REDIC;
Norway, longitudinal: assessment every 6 months for
maximum 2.5 years), Norwegian registry of persons
assessed for cognitive symptoms35 (NorCog; Norway,
cross-sectional), Samhandling mellom avdeling for
alderspsykiatri og kommunale sykehjem (SAM-AKS;
Norway, cross-sectional), The Dementia Study in North-
ern Norway36 (NordNorge, Norway, longitudinal: assess-
ment at baseline and 1 year), Progression of Alzheimer’s
Disease and Resource Use37 (PADR; Norway, long-
itudinal: assessment at baseline and 1 year), The Dementia
Study in Western Norway38 (DemVest; Norway, long-
itudinal: assessment every 12 months maximum 6 years);
and data from the National Alzheimer’s Coordinating
Center (NACC; USA, longitudinal: assessment approxi-
mately every 12 months) and the National Institute on
Aging Genetics Data Storage Site (NIAGADS), Table 1).
Full cohort details are contained in the supplementary
material and the Norwegian cohorts are also described in
the latest GWAS of Alzheimer’s disease19. Informed
consent was obtained by each study for all participants.
Some data used in the preparation of this article were

obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). The ADNI
was launched in 2003 as a public−private partnership, led
by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD). For up-to-date
information, see www.adni-info.org.

AD clinical assessments
Diagnosis of AD was performed according to ICD-10

etiological diagnosis, NINCDS-ADRDA criteria or clinical
diagnosis by psychiatrist or geriatrician. Longitudinal data
were available for seven cohorts (ADNI, AddNeuroMed,
DemVest, NordNorge, PADR, REDIC, NACC) and psy-
chotic symptom classification was based on the maximum
amount of follow-up data available. Any cases with a his-
tory of bipolar disorder or schizophrenia were excluded.
For NorCog, PADR, REDIC, SAM-AKS, NACC and ADNI
the necessary information on psychiatric history was
extracted from source study data resulting in 3, 1, 2, 1, 31
and 1 exclusions, respectively. For AddNeuroMed, Dem-
Vest, IRCCS 1 and NordNorge this was an exclusion cri-
terion applied at entry to those individual studies. No
information about psychiatric history was available for the
HMS study. Dementia severity was assessed in all cohorts
by Mini Mental State Examination (MMSE) and psychotic
symptoms were assessed by the Neuropsychiatric

Inventory (NPI) or its short version, the Neuropsychiatric
Inventory Questionnaire (NPI-Q), they are among the
most widely used validated instruments to assess psy-
chosis39. Psychotic symptoms are rated on the basis of
items A (delusions) and B (hallucinations) of the NPI and
NPI-Q. These are two different versions of the same scale,
which are strongly correlated and have good between-rater
and test−retest reliability, particularly for the psychosis
items31,40. Ratings were carried about by trained research
staff in all cohorts. In the full NPI, neuropsychiatric
symptoms are coded as present or absent first. If rated
present they are further scored according to their fre-
quency (1–4) and severity (1–3) with the resulting scores
multiplied to give an overall rating (i.e. possible scores are
1, 2, 3, 4, 6, 8, 9 and 12 with 0 indicating no symptoms).
The NPI-Q is rated only on a scale of 0−3 according to the
severity of the symptom. Both scales have been designed to
be completed by verbal interview with a proxy informant
who knows the person with AD well. Several diagnostic
criteria for AD+ P have been proposed but none have
been adopted clinically, meaning that where in other
psychiatric disorders medical records can be screened, in
AD+ P this would be unreliable and ratings on specific
validated assessment scales must be used. Using such
scales, we thus undertook examination of three related but
progressively more homogenous psychotic phenotypes:

1. Psychosis wide: Psychosis present: the presence of
delusions or hallucinations (NPI/NPI-Q item A or
B > 0) at any point; No psychosis: no evidence of
delusions or hallucinations (NPI/NPI-Q item A or
B= 0) at any point in follow up.

2. Psychosis narrow: Psychosis present: the presence of
delusions or hallucinations (NPI/NPI-Q item A or
B > 0) at any point; No psychosis: here, an additional
level of screening was applied to those rated as
having no delusions or hallucinations. In these cases,
if an individual was psychosis-free based on criteria
for psychosis wide but had not yet reached a
moderately severe dementia stage based on available
data (defined as MMSE < 20) they were excluded
from the analysis. This is a similar approach to that
used in most previous AD+ P genetic research24,41.

3. Delusions narrow: Delusions present: the presence
of delusions (NPI/NPI-Q item A > 0) at any point
during follow-up. Thus, the delusion group was the
psychosis narrow group above with any individuals
rated as having hallucinations only removed. No
delusions: as per psychosis narrow.

Genotyping and QC
The genotyping chips used are detailed in Table 1. Raw

genotype data for individual cohorts underwent appro-
priate QC steps (implemented in PLINK). SNPs with a
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minor allele frequency ≤5% and a Hardy Weinberg equili-
brium p < 10−5 were excluded. The SNP and individual
genotype failure threshold was set at 5% and individuals
with mean heterozygosity ±3 standard deviations were
excluded. The analysis was restricted to individuals of
European ancestry using genetic principal components
computed by EIGENSTRAT. Related (pi-hat > 0.2) or
duplicate individuals both within and between cohorts were
excluded. Phasing (EAGLE2) and imputation (PBWT) was
done via the Sanger Imputation Service using the Haplotype
Reference Consortium (r1.1) reference panel on all cohorts.
After imputation only SNPs with an imputation quality
(INFO) score > 0.4 and MAF> 0.05 were retained. This
resulted in 4,895,913 SNPs common across all 11 cohorts
available to compute polygenic risk scores.
The most recently published schizophrenia GWAS data

from the Psychiatric Genomics Consortium (PGC) was
used as base data to generate PRS in the target AD
sample26. SNPs with MAF < 0.1, INFO < 0.9 and indels
were excluded from the base dataset to leave only the
most informative SNPs and only one SNP from the
extended MHC region was included42. As a positive
control and to evaluate the specificity of the association
we then generated PRS of height and depression using the
latest GIANT consortium and PGC GWAS results40,43.

Analysis
PRS for schizophrenia were generated in PRSice44 at the

following ten GWAS p value thresholds (PT): 5 × 10−8,

1 × 10−5, 1 × 10−4, 1 × 10−3, 0.01, 0.05, 0.1, 0.2, 0.5 and 1.
Clumping was performed (250 kb, r2 > 0.1) to retain only
the SNP with the strongest association in each window.
The resulting PRS were standardized (centering by mean,
scaling by standard deviation) for the analysis.
Power was calculated using AVENGEME45, with schi-

zophrenia parameters as set out in Palla and Dudbridge45,
number of markers genotyped in both datasets was 76,213
(see section “Schizophrenia PRS is associated with AD
psychosis status”), a prevalence of 40%1 and of 36%1 was
used for psychosis and delusions, and case-control sample
fractions as per Table 2. There are no data available for
estimated covariance between AD+ P and schizophrenia
but if this value is assumed to be 0.08 (less than the 0.13
and 0.17 for schizophrenia and major depressive disorder
and bipolar disorder estimated by AVENGEME45), this
study has ≥80% power for each PT ≥ 0.01 for psychosis and
delusions respectively but <80% power below this value.
All statistical analysis was implemented in R. For each
cohort ten logistic regression models (one per PT) were
run with each of the previously defined psychosis phe-
notypes as the binary outcome and the first ten ancestry
principal components included as covariates. Disease
severity is accounted for in our “narrow” phenotype
definitions and as there is no strong evidence that age and
gender are associated with AD+ P1 so these were not
included as covariates. Logistic regression assumptions
were confirmed using the R “car” package. Proportion of
variance explained (R2) by PRS, on the observed scale, was

Table 2 Frequencies of symptoms by cohort for the three psychosis phenotypes

Psychosis wide Psychosis narrow Delusions narrow

N Absent Present N Absent Present N Absent Present

n % n % n % n % n % n %

AddNeuroMed 225 133 59 92 41 157 65 41 92 59 142 65 46 77 54

ADNI 248 183 74 65 26 117 52 44 65 56 99 52 53 47 47

DemVest 80 30 38 50 63 75 25 33 50 67 69 25 36 44 64

IRCCS 1 326 222 68 104 32 293 189 65 104 35 271 189 70 82 30

HMS 178 107 60 71 40 162 91 56 71 44 152 91 60 61 40

NorCog 563 402 71 161 29 288 127 44 161 56 260 127 49 133 51

NordNorge 133 105 79 28 21 45 17 38 28 62 38 17 45 21 55

PADR 106 62 58 44 42 83 39 47 44 53 80 39 49 41 51

REDIC 323 158 49 165 51 276 111 40 165 60 265 111 42 154 58

SAM-AKS 93 73 78 20 22 80 60 75 20 25 75 60 80 15 20

NACC 836 520 62 316 38 656 340 52 316 48 601 340 57 261 43

Total 3111 1995 64 1116 36 2232 1116 50 1116 50 2052 1116 54 936 46

Percentages may not sum to 100 due to rounding
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determined by subtracting the Nagelkerke’s pseudo-R2 of
the null model from that of the full model. Regression
coefficients for each PT across all cohorts were then
included in random effects meta-analyses to account for
between-study variation in data collection protocols, fre-
quency of psychosis and dementia severity46–48. Meta-
analysis was undertaken using the “rma” function in the
“metafor” package using the REML method49. Because the
PRS calculated were correlated, a Bonferroni correction
for multiple testing was considered too stringent. Using a
correlation matrix of the ten PRS and the matSpD tool
(https://gump.qimr.edu.au/general/daleN/matSpD/), the
effective number of independent tests was determined to

be 5 and the experiment-wide significance threshold for
type I error rate of 5% determined to be p= 0.01. All tests
reported are two-sided.

Results
On average across all 11 cohorts, individuals were in the

mild-moderate stages of dementia at first assessment
(mean MMSE of 19). Mean MMSE by cohort ranged from
an MMSE of 12 (IRCCS 1) to 24 (ADNI) and this was a
correlate of the prevalence of psychosis in each cohort
(note the denominator would be the overall cohort N in
Table 1), with cohorts that contained individuals with
more severe dementia typically having a higher propor-
tion of people with psychosis. Between cohorts, mean age
at baseline ranged from 75 to 87 years and the proportion
of male participants ranged from 26 to 59%. There was
little difference in age between the psychosis and no
psychosis groups across all studies but gender distribu-
tions did differ.
Frequency of the three psychosis phenotypes by cohort

is shown in Table 2. Of the 3111 individuals screened,
1116 (36%) had psychosis (wide definition group). Of the
1995 who were rated as having no psychosis based on
their assessment scale result alone, 879 had not yet
reached the moderate stages of disease and so were
excluded; 1116 AD+ P cases and 1116 AD no psychosis
“controls” were included in the analysis of the narrow
phenotype of psychosis. In all, 936 cases met the criteria
for having delusions narrow.

Schizophrenia PRS is associated with AD psychosis status
After clumping, 76,213 independent variants were

available for computing PRS. Random effects meta-

Fig. 1 Odds ratios from random effects meta-analysis of AD
psychosis wide, narrow and delusions narrow association with
schizophrenia PRS. Each bar represents PRS composed of markers at
ten different schizophrenia GWAS P value thresholds (PT). P values
shown above each bar

Table 3 Random effects meta-analysis results for association between schizophrenia PRS across ten GWAS thresholds
(PT) and AD+ P

PT nSNPs Psychosis wide Psychosis narrow Delusions narrow

OR 95% CI p OR 95% CI p OR 95% CI p

5 × 10−08 125 1.04 0.96–1.13 0.32 1.01 0.92–1.10 0.89 1.03 0.94–1.14 0.48

1 × 10−05 511 1.07 0.98–1.16 0.15 1.06 0.97–1.16 0.20 1.06 0.97–1.17 0.20

1 × 10−04 1147 1.07 0.96–1.18 0.21 1.07 0.96–1.19 0.21 1.07 0.96–1.18 0.21

1 × 10−03 2922 1.09 0.98–1.21 0.11 1.10 0.98–1.22 0.10 1.09 0.98–1.21 0.10

0.01 8709 1.14 1.05–1.23 0.003 1.16 1.06–1.28 0.002 1.18 1.06–1.30 0.001

0.05 19,656 1.12 1.03–1.22 0.01 1.13 1.02–1.24 0.02 1.14 1.03–1.26 0.01

0.1 28,143 1.11 1.01–1.21 0.02 1.12 1.02–1.24 0.02 1.15 1.04–1.28 0.01

0.2 40,253 1.10 1.01–1.20 0.04 1.12 1.01–1.24 0.03 1.14 1.02–1.26 0.02

0.5 61,727 1.10 1.00–1.22 0.04 1.13 1.02–1.25 0.02 1.15 1.03–1.28 0.01

1 76,213 1.10 0.99–1.23 0.08 1.13 1.02–1.25 0.02 1.14 1.03–1.27 0.02

OR odds ratio, odds ratio estimates may differ slightly from those represented in Fig. 1 due to rounding
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analysis across the 11 cohorts showed the largest OR for
the schizophrenia PRS at PT= 0.01 and this was sig-
nificantly associated with symptom status across the
psychosis wide, psychosis narrow and delusions narrow
phenotypes despite the progressively smaller sample size
in each of these groups (OR: 1.14, 95% CI: 1.05–1.23, p=
0.003; OR: 1.16, 95% CI: 1.06–1.28, p= 0.004; OR: 1.18,
95% CI:1.06–1.30, p= 0.001 respectively) (see Fig. 1 and
Table 3). PRS was also significantly associated with both
the psychosis narrow and delusions narrow phenotypes at
every PT > 0.01. The largest effect size was observed in the
delusions narrow group. Overall, there was no evidence of
significant heterogeneity; I2 statistics were close to 0% for
PT= 0.01 across the three phenotypes.
In the individual cohort analysis, we observed that the

effect estimates of association between schizophrenia PRS
and AD+ P in nine of the 11 studies were in the same
direction (OR > 1), albeit not statistically significantly
(Supplementary Table 1). A forest plot of individual study
estimates for delusions narrow at PT= 0.01, the strongest
association found in the above meta-analysis, is shown in
Fig. 2. A similar plot at PT= 1 for comparison is shown in
the Supplementary material along with plots for psychosis
wide and psychosis narrow phenotypes. The highest
Nagelkerke’s R2 estimate was 2.9% (AddNeuroMed) and
the lowest was <0.1% (IRCCS 1). An overall variance
explained (Nagelkerke’s R2) in AD+ P by schizophrenia
PRS of 0.08% was estimated by calculating the weighted
average R2 across the 11 studies. To determine the spe-
cificity of the signal, PRS for major depression (using the
PGC GWAS43) and height (GIANT consortium GWAS40)
were generated post-hoc at PT= 1 and tested for

association with delusions using the same procedure as
described in the section “Analysis”. Neither PRS showed
any evidence of association (major depression: OR: 1.03,
95% CI: 0.91–1.18, p= 0.61; height: OR: 0.99, 95% CI:
0.85–1.17, p= 0.99).

Discussion
We set out to examine whether genetic risk for psy-

chotic symptoms in AD (AD+ P) is attributable to
common schizophrenia variants. Using polygenic scoring,
we found that schizophrenia PRS was associated with
AD+ P in a collection of over 3000 well-characterized
cases and the association persisted as the AD+ P phe-
notype was more precisely defined, despite the progres-
sively smaller N. The largest effect size was observed at
PT= 0.01 which was associated with a 1.14-, 1.16- and
1.18-fold (per standard deviation increase in PRS)
increased risk of psychosis (wide), psychosis (narrow) and
delusions (narrow), respectively. In the individual cohort
analysis, the odds ratios of 9 of the 11 studies were in the
same direction (OR > 1). In all, these new findings suggest
that AD+ P is part of a spectrum of neuropsychiatric
conditions characterized by psychosis across the lifespan.
However, in common with other studies in psychiatric
genomics PRS are yet not appropriate for symptom or
disease course prediction in AD+ P. Although the var-
iance explained by schizophrenia PRS in AD+ P is only
modest, with the R2 estimates being less than 1%, this
should be seen in the context of the same PRS explaining
around 2.5% of the variance in bipolar disorder and 1% in
MDD in a cross-disorder analysis of the Psychiatric
Genomics Consortium with significantly larger target
sample sizes50.
In line with our findings, a recent study in UK Biobank

found psychotic experiences in the general population to
be associated with PRS for schizophrenia, with the
strongest association observed for delusions12. Several
possible conclusions can be drawn from the finding that
the association was still observed in the delusions phe-
notype in this study, despite a considerably smaller N
compared with the broader psychosis phenotypes. This
finding may point towards a subset of AD+ P patients
that have a more schizophrenia-like phenotype. More
work is needed to investigate whether further diagnostic
refinements to AD+ P syndrome definitions are neces-
sary, which may provide a more robust approach for
pharmacological intervention trials. Related to this, from a
methodological point of view, we show that there is a need
for future studies in AD to consider delusions and hal-
lucinations separately. We cannot rule out a genetic
association between hallucinations in AD and schizo-
phrenia in these cohorts but the evidence at present
suggests a weaker association than for delusions. One
might speculate that this is due to visual hallucinations in

Fig. 2 Forest plot of meta-analysis of delusions narrow for PRS
calculated at PT= 0.01 (i.e. 8709 SNPs). Overall estimate from
random effects model is represented by the diamond below the
individual study estimates
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AD being more often the result of a broader range of
causes (e.g. due to medication or delirium) than delusions,
thus introducing more noise into the phenotype. The final
wider implication is related to the schizophrenia PRS
being associated with a broad spectrum of psychotic dis-
orders and personality traits11–13,50–52. Our findings
support a transdiagnostic explanation of delusions, which
reaches into neurodegenerative disease and is under-
pinned by a degree of common genetic liability.
A key strength of our study is the detailed phenotyping

with longitudinal data being available in 7 of the 11
cohorts. Rather than relying on medical record screens,
which would be highly unreliable for AD+ P given the
lack of universally accepted and used diagnostic criteria,
every individual in our analysis was assessed using spe-
cific, reliable assessment tools. We then used this data to
dissect AD+ P phenotype by focusing on delusions as
well as the broader syndrome. We also followed previous
research by taking extra measures to screen the “control”
groups. This removed any cases in the mild stages of
disease who had not yet developed symptoms (i.e. those
still at risk1). This approach has been used in most pre-
vious genetic research but our extension to focus on
delusions in AD+ P is novel. Our finding that the asso-
ciation persisted with this more precision definition is
consistent with genetic studies of other polygenic traits,
like depression43.
For one study (HMS) data on history of major psy-

chiatric conditions were not available. It is possible that
some individuals with schizophrenia were present in this
cohort; however, HMS is a cohort with a mean age of
87 so it is highly unlikely that the number would be more
than one or two out of 178 people in the HMS cohort (this
is also supported by the very small numbers we found
among the other studies we screened). With over
3000 samples, this is, to our knowledge, the largest ana-
lysis of AD+ P to exploit GWAS data41. We acknowledge
that using different cohorts has led to some variability due
to sampling but it is important to acknowledge that there
are no single cohorts which are large enough to conduct
an analysis of this kind and because of potential sampling
and protocol variations across the individual studies we
ensured an appropriate analysis was implemented to
account for this variability; the same approach as used in
other studies examining PRS in complex phenotypes46–48.
We had access to raw individual-level clinical and geno-
type data, allowing us to run the same regression models
in each study. This included undertaking the same QC
across cohorts, imputing all chip data to the same refer-
ence panel and analyzing only SNPs present across all
cohorts. After ensuring this standardized process was
followed for each cohort we ran a random effects meta-
analysis, allowing for the effect of the PRS on AD+ P to
vary across studies. In all, and in the absence of a single

large enough study, these measures provide the most
robust estimates, as reflected in the low heterogeneity
statistics of the meta-analysis and the narrow range of
effect estimates and overlapping confidence intervals
across the 11 studies included (Fig. 2 and Supplementary
Figs. 1–3). Finally, as with all similar studies, these results
are not generalizable to individuals with non-European
ancestry; there is an equal imperative to extend the
genomics of AD+ P to other populations as in AD itself.
A previous study that examined a genetic risk score at a

more conservative PT comprised of only 94 genome-wide
significant schizophrenia SNPs found it to be lower in
AD+ P cases24. Our study is a similar size to this previous
study, and the NACC data were used in both. Given that a
PRS with only 94 SNPs will be a less powerful predictor
than a full genome-wide score, it is possible larger studies
will be needed to confirm associations at this more con-
servative PT. Nevertheless, schizophrenia is highly poly-
genic; tens of thousands of markers explain only 7% of the
variance on the liability scale, while for optimum cross-
trait case-control (e.g. schizophrenia and bipolar) pre-
diction many thousands more SNPs are required50. In
addition, cases of schizophrenia in the PGC study (used as
base sample to estimate PRS) include patients with both a
positive and negative syndrome. There is evidence that
negative and disorganized symptoms are more heritable
than positive, which—although we report a positive
association—may reduce the power of schizophrenia PRS
at more conservative PT to discriminate AD cases with or
without psychotic symptoms53,54. Accordingly, a full
account of association between schizophrenia and AD+ P
should exploit the full polygenic nature of schizophrenia;
our study is the first to do this and the findings represent
an important further step towards a complete account of
the relationship between common schizophrenia variants
and AD+ P. Another important milestone will be an
appropriately powered discovery GWAS of AD+ P and
all of these points underscore the need for increasing
samples sizes in this field.
In summary, these findings support shared genetic lia-

bility between schizophrenia and psychosis in AD. This
provides a strong rationale for further work to build a
clearer clinical and biological understanding of the psy-
chosis syndrome in AD, an urgently needed step for better
management and treatment development.
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